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Abstract

In an effort to overcome the limitations of existing rigid bonding analysis of composite laminates, the current three-
dimensional elastostatic model is proposed. In this model, the three-dimensional interlaminar elastic stress field is
determined using the technique of layerwise differential quadrature. The new formulations allowed us to determine the
influence of a natural bonding layer upon the field variables in the laminated structure. The interfacial characteristics of
continuity and discontinuity satisfy the kinematic continuity conditions through the elastic-bonding layer. A number
of case studies are examined, comparisons with rigid bonding and finite element analyses are provided, and the influence
of the pertinent parameters on the interlaminar stress field is evaluated and discussed.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction
1.1. Background

Materials of laminated composite constitution have been utilized in a broad range of engineering ap-
plications, such as space and underwater exploration, aircraft structures, electronic and medical compo-
nents, high-end sporting equipment, just to name a few. In view of the anisotropic nature and complexities
of composite multi-layered bonded laminates, various modelling techniques had been proposed. To predict
the mechanical performance of laminated plates, for example, Ambartsumyan (1970), Reddy (1984a),
Whitney (1987), and Whitney and Leissa (1969), used the classical plate theory to approximate the overall
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response of the laminates. This is because the theory treats the plates as being infinitely rigid in the
transverse direction. The first and third-order theories (Stavsky, 1965; Yang et al., 1966, Whitney and
Pagano, 1970; Reddy, 1984b,c), to a certain extent, remedy these defects. However, the equivalent single
layer theory, directly evolved from conventional plate theory, remains unable to provide an accurate as-
sessment of the distribution of the stress components at the ply level. Noting these restrictions in traditional
plate and shell theories, the layerwise theory of Reddy (1987, 1989) was developed. Reddy assumed separate
displacement fields for each lamina, and compared with the equivalent single layer theories, providing a
possibility for accommodating the kinematical characteristics of the laminate. Distinct from the numerous
plate theories, Srinivas and Rao (1970) adopted three-dimensional elasticity theory to develop an analytical
model for laminated structures. They provided results for simply supported square sandwich laminates. For
other combinations of edge-support conditions, Liew et al. (2002) presented a set of three-dimensional
elasticity solutions for cross-ply laminates using the differential quadrature (DQ)-layerwise modeling
technique.

In the conventional analysis of laminated composites mentioned above, the composite interfaces are
always assumed to be rigidly bonded, i.e., the displacements of the composite interfaces are single valued.
The influence of the relatively low shear modulus of the matrix material is most prevalent at the ply in-
terface. This fact, coupled with the possible defective bonding of laminates, may lead to an elastic or weak
interlayer connection. Indeed, it has been recognized, see Lu and Liu (1992), that the low shear modulus of
the polymer matrix materials has significant effects on the transverse shear deformation. Consequently, the
interfacial conditions can strongly affect the service characteristics of laminates. In order to provide a
proper assessment of the performance of composite laminates, it is of vital importance to account for the
bonding condition accurately. This can be achieved by combining the transverse shear effects with the
continuity requirements for both displacements and interlaminar stresses of the composite interface.

The study of non-rigidly bonded interfaces in composite structures was pioneered by Newmark et al.
(1951) and later by Goodman (1967), where based on the Euler-Bernoulli beam theory, a laminated beam
theory with linear shear slip in the layer interface was developed. Toledano and Murakami (1988) used a
laminate theory, accounting for both transverse shear effect and interlaminar shear stress continuity, to
study non-rigid bonding effects. Elastic studies of sandwich beams with non-rigid bonding were also pre-
sented by Rao and Ghosh (1980) and Fazio et al. (1982).

There are basically three model types of weak bonding between layers. They are shear modelling with
slip between layers; normal separation modelling with an opening between layers; and general weak
bonding that combines both of the preceding models. The concept of weakly bonded layers has been in-
troduced by permitting a certain displacement jump, see Lu and Liu (1992) and Liu et al. (1994), at an
interface. These authors related the interfacial jump to the interlaminar stress, through appropriate con-
stitutive relations, which establish an equivalent stiffness along the jump direction.

In this paper, the authors overcame some of the limitations of existing rigid and non-rigid models by
adopting an innovative technique, which considers the elasticity of the bonding layer using three dimensional
elasticity and the DQ method. In the following section, we provide a brief summary of the DQ method.

1.2. Differential quadrature method

In spite of its flexibility and readiness to deal with most engineering problems, in the current application
the finite element method suffers from the following drawbacks. First, the size anomaly between the laminae
and the bonding layers presents severe difficulties in discretisation. Either a very extensive use of elements is
required or a highly distorted mesh is tolerated, thus affecting the accuracy of the results. Second, in view of
the three-dimensional nature of the considered problem, it is very difficult to obtain an assessment of the
resulting error level. Third, it is a numerical method requiring the appropriate software and experience to

apply it properly.
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Therefore, there is much incentive to develop more accurate analytical modelling tools for treating
composite laminates. The DQ method is a prospective numerical alternative originated by Bellman (1973)
to solve linear and nonlinear differential equations. The basic idea of the DQ method is that the partial
derivative of a function with respect to a variable at a given discrete point can be approximated as a
weighted linear sum of the function values at all discrete points in the domain of that variable, i.e.,

)2y Auf (), i=1,2,.. N, (1)
=1

where f(x) is the function that represents the real physical field, N, is the number of spacing grid points, and
A;; the weighting coefficients to be determined. The DQ method is briefly outlined here and the readers are
advised to see Shu (1991) for further details. Let us select the trial function Vp(x) to be Lagrange’s inter-
polation polynomials, viz,

Ly, (x
V@(x):Lﬂ)], 6=12,...N, (2)
(x —xo)Ly, (xo)
where
Ng
Ly, (x) = H(x — Xy) 3)
a=1
L][g (xg) is the first derivatives of Ly, (x) with respect to x
Ng
1
Ly (xe) = ] (xo —x.) (4)
6

Substituting Eq. (2) into Eq. (1), the weighting coefficients of the first order derivatives are
m

(1 _ ) ;

4" = (xl-fxx)Lﬁ\l,i,(xi)’ i#a

(5)

Similarly, we may obtain the weighting coefficients for higher-order derivative through this scheme. The
coordinate variable x with the subscript i refers to the spatial position of the grid point, and the usual
spacing patterns of these grid points in the DQ method are

(I) Equal spacing : X = i=1,2,...,N, (6)

and

i1

Ne—1
2 )

The latter spacing pattern is employed in this paper because of its stable convergence characteristics in plate

analysis (Liew et al., 1999, 2001).

The advantages of the DQ method lie in the simplicity of the devised algorithms and the use of gross grid
point distributions, leading to efficient computation and flexible discretization. It also has the added ad-
vantage of providing highly accurate results, because it implements higher-order interpolation (shape)
functions with ease.

1 —cos b

(IT) Cosine spacing : X = i=1,2,...,N, (7)
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Since its introduction, the DQ method has been applied to various engineering mechanics problems, such
as bending, vibration and buckling of beams, columns and plates, including thin, thick and laminated
composite plates. The successful implementation of this method has been reported in literature; see the
works of Bert et al. (1988), Jang et al. (1989), Farsa et al. (1993) and Han and Liew (1997). These works,
amongst others, culminated in a comprehensive review of the development and application of DQ method
in computational mechanics presented by Bert and Malik (1996).

2. Interface modelling in elastic bonding
2.1. Physical model of elastic bonding

Consider a rectangular L-layer laminate, L being the total number of layers, and 4; the thickness of the
ith lamina, as depicted in Fig. 1. Any two adjacent laminae are bonded together, particularly in the in-
termediate region of the composite, by a natural (isotropic or anisotropic) layer of thickness /4. 4 is assumed
to be very thin in comparison with the thickness of the adjacent laminae. For example, #/h* ~ 0.001, with
h* being the thickness of the kth layer of the laminate. Since each layer consists of fibres, which are ran-
domly distributed in the matrix, the considered system can be regarded as homogenous and isotropic.

In the current model, the natural layer is assumed to be rigidly bonded to the neighbouring laminae.
Consequently, the continuity conditions of displacements are satisfied, and the continuity conditions of the
transverse stresses are enforced along the interfaces between the bonding layer and each of the neigh-
bouring laminae. The rigid bonding model, on the other hand, does not cater for any deformable behaviour
along the interface of two bordering laminae. It is also worth noting that the weak bonding model accounts
for the relative movement through a series of independent three dimensional springs linking two material
points, initially on opposite sides of the interface, via constitutive relations of displacement jumps and the
corresponding stresses. The shortcomings of the latter are twofold. First, discrete springs are incapable of
capturing the bonding interaction between layers. Second, the stiffnesses of the springs in three spatial
directions of one material point are difficult to determine accurately as the stiffnesses are mutually related.

2.2. Theoretical model of elastic bonding

To establish a precise theoretical basis for elastic bonding suitable for the diverse situations encountered
in engineering applications, the authors propose to integrate three-dimensional elasticity theory within the
framework of layerwise theory.

Lamipae
h »
l:‘-:n.. U}.ﬁl ~ .y
p -—;.:JT Y ;_-: s : }'1."?
) < Ul X i ;
Al |
h
/ Bonding Layer

(a) ®)

Fig. 1. The laminated plate structure with the bonding layers.
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Supposing that the displacements in the x, y and z directions U;, ¥; and W;, of the ith layer are given by

lJi:ui(x7y7Z)7 Vl—:U,‘(X,)/,Z), VV,-:W,'(X,)/,Z)7 1217273714 (8)
then the strain—displacement relations can be written as
Lo
T Y oy T oz )
Oou v ov  Ow _Ow  Ou

))xy:a_y+a7 y)z aZ—"_aa Vax ax+az
where ¢,, &, and ¢. are the normal strains, u, v, w are displacements in x, y, z directions, and v, , 7,., and 7,,
are the shear strains in the x—y, y—z and z—x planes, respectively. Substituting Eq. (8) into Eq. (9), we obtain

the strain field for the ith layer

w_U o _ o _OW
& = - 5 & = — s & —_ —
* Ox 7 dy ‘ 0z (10)
) ou; oV . orv, ow; . ow;  ou;
"))(1):—+—7 »y(’):_+_7 V(l>:_+_
vy Ox B0z Oy > x  0z
The constitutive relations are written as
T T
{Gxaayyaz;‘c}mfz)mrxy} = [Cij] : {8x78y782ayyz7yzx7yxy} (11)
where o,, 0,, 6, are normal stresses, 7,., T.,, Ty, are shear stresses, and C; (i,j = 1,2,...,6) is the stiffness
matrix. The equations of equilibrium for each laminae and bonding layer are
0o, 0ty  OT¢ do, 01, 01, 00. Ot Ot
— E 2 — - —_— = O 12
6x+6y+6z ’ ©y+6x Oz ’ az+6x+6y (12)

In this work, it is proposed that the variations of the thickness components of the transverse strains are
proportional to the displacement jump between the surfaces of the bonding layer. This assumption is
reasonable and can be justified by the fact that the bonding layer is typically thin.
At the interface between the ith lamina and a bonding layer,
u d
AU Wz — Wi+l (i)

G- Ve W, W U - U
2 ’ Y :74—77 zx:7+7
h = h oy Ox h

il (13.1)

and at the interface between a bonding layer and i 4+ 1th lamina

u d u d u d
_Wt _Wi+1 (i+1):_V; _K+l+% w(z'Jrl):%_Ut _Uz‘+1

n = h . T o A

where the superscripts u and d refer to the upper and lower surfaces of the bonding layer, respectively.
From Eq. (13), it should be noted that only the transverse components of the strains are linearly sim-
plified, while the in-plane components remain unchanged. This is crucial for the present model, which
accounts for the effects of in-plane deformation in the bonding layers. Distinct from the discrete spring
model of weak bonding, the present model is treated as a continuum.
The simply supported edge conditions can be defined as

i) _

el (13.2)

w=0, =1, =0, atthe edges of x = constant (14.1)
w=g0, =1, =0, atthe edges of y = constant '
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while the clamped edge conditions can be defined as
u=v=w=0, at the edges of x,y = constant (14.2)

and the surface conditions as being

0. =1, =71,=0, at bottom of laminate (15)
0.=—¢q, T.=71,=0, attop of laminate
where ¢ is the surface loading.

Obviously, the interfacial characteristics of rigid bonding such as continuity/discontinuity of displace-
ments, and strains and stresses no longer hold, and the corresponding constraints are transferred through
the material bonding layer, Fig. 1(b). At the interface between the lower lamina and the bonding layer, the
constraints of continuity of the elastic bonding are

Ggi) 6§BL)

) = ¢ (BY , i=1,2,...,L—1 (16)
0 (BL)

2V J top zy bottom

and at the interface between the bonding layer and the upper lamina are

O.EBL) o.£i+1)

7{BL) = { 7l , i=2,...,L—1,L (17)
(BL) (i+1)

TZ)’ top sz bottom

where the superscripts of the stress notations, i or i + 1, indicate the lamina position, and BL refers to the
bonding layer. According to DQ methodology, all governing equations can be expressed in terms of the
derivatives of displacements. Thus, the results obtained from this model are accurate three-dimensional
numerical solutions. Substituting Eq. (9) into Eq. (11), and assuming orthotropy of the laminae, we can
obtain

Ou ov ow Ou ov ow Ou
" =Ci1—+Cih—+ Ci3—, =Cy—+Cp—+Cyxy—, 06.=C3—+Cp—+ Cy3—
o nas + Ci2 6y+ B33, oy 235y + Cx» 6y+ ns o 33y + Cx 6y+ C

ov  ow ow Ou Ou Ov
T}Z_C44<§+@>7 TZX_C55(a+§>7 Txy—C66(5+a)

(18)
For simplicity, the following variables are normalised as
x=2 y=2Y z==
o=t 7=t =%
a’ b’ - H

where Z; is the thickness coordinate of the ith layer, a and b are the length and width of the laminate,
respectively. Let us now define

H=Y h+(L-1)h
b_p h_, H_, (20)
a_ P a_ 121 hl'_ 1
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The normalised equilibrium equations for the ith lamina ( = 1,2,...,L) can then be expressed as
%(Cﬂ + Cés) Eg;GY + Ces 2; + ;2 szg +Di? 44227? +g—£(C23 + Cu) %@Z, = (21)

The support conditions of Eq. (14) can be normalised as follows: for the simply supported edge conditions

_ oU ov ow 1 oU ov
W =0, C11§+C12§+C136—Zi:0, (Fpﬁ+ pﬁ) =0, at the edges of constant x
— oU oV ow 1 oU oV
W=0, Cy=— X 4+ Cpn— v + Cy; A =0, <Bp i + Ban) =0, at the edges of constant y
(22.1)
and for the clamped edge conditions
U=V =W=0, at the edges of x,y = constant (22.2)

In view of DQ methodology (Eq. (1)), the equilibrium equations at the interior domain, boundary

conditions, and interface continuity conditions can be formulated in terms of displacement variables and
the corresponding weighting coefficients in a discretized DQ format.

The normalised DQ equilibrium equations at an interior grid point (X, Y,,, Z,) can be expressed as

B2 & o
Bzc”ZA[2 (X, Y,,2,) C{}ZA DX, Y, Z) + (3") c> 407", v, 2))
! f=1
K M
+BZ(CI{2} Cé6}) A : Z Ymg A/ﬂYg’Z)
J=1 g=1
K—-1

=0

+ Bf)[—]l (Cl{;} + CéS} ZA [ Zr/ 17 Ymvzf)
j=2

1 i i % 1 = 1] 7=(i)
ﬁ (Cél} + Cé6}> ZA[YrLg ’ [ZAkijU (X], ngz C{ ) ZAXk/ X YnuZ)

p g=1 =
1 - &
tr Bz sz} ZAYmg (ka Y, Z) + C44} Xka Yo, Zf) (23)
g=1 f=1
i) . Rl
BZ (Céx + Ci4> AYmg ) ZAerW (X, ngZf)] =0
g=2 =1

K
iz(c;wc )ZA [ZAMU X,.Y,.2;)

j=1

1 i i 1

(@)
U X, Y., 2)

K-1
+HC§S}ZA”

J=

Z Aer Xka Z/)

+BZ Ci4} ZAYmg_ (Xe, Ye, Z,) +IT;C.§;} ZA[er]/'W(l>(Xk? Y, Zp) =0, i=12,... L
g=2 =1

i
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where (X;, Y,,, Z,) is an interior grid point. A’s are the weighting coefficients, whose superscript indicates the
order of derivation. The capital letter in the subscript indicates the coordinate direction of derivation, with
the lower letters referring to the grid points. U, ¥ and W are displacements whose superscript refers to the
layer. K, M, and R; represent discrete numbers along the x, y and z directions within the ith layer. The
superscript of the stiffness coefficient C of the laminate material refers to the layer sequential number.
The normalised DQ support conditions for different boundaries are given as
For simply supported edge conditions

W(”(X1 or X, Y, Z;) =0, i=12,...L g=12 .. M, f:I 2,....R

Cl{ll} ZAXIJ— CI{IZ} ZAng X],Ym,Z/) Cl{;}H ZAZf (X15Y7Z‘1) =0
g=1
or
Cl{l} ZAXKJ_ C1{2} ZAng XK7 Ym7Z/) C1{3}H ZAZf (XK? Y, 7Z(1) =0
g=1
{1} S (i)
C66 BPZAXIJV J g’Zf +_ZAngU (X17 Zf) =0
J=1 p m=
or
[ K M
ng} BPZA 7 (Xj, e Z B_ ZAngU (Xx, Y,,,,Z,)} =0 at the edges of constant x
L Jj=1 P m=1

WX Y or Yy, Z,) =0, i=12... L j=12,.K; f:12... R

C;}ZAW (X, Y1,Z,) + Cli ZAW X;, Yy, Zy) + Cl HZAZM Y1,Z,) =0

or

{i} {i} - [ 370 {i}

C21 ZAXjk Xin YMvZf Czlz ZAYMmV (X,, ) C23H ZAqu (X YM7Zq) =0
q=1

K M
1 —(
1B, 4l T Xk7Y17Zf)+FZA[Yl]lmU()(X_,-,Y,,,,Zf) —0 or
—

1 m=1

C{’} Bpsz;AXjkV (X, Y, Zy) —i—Bip sz;A U (X;, Y, Zr)| =0 at the edges of constant y
(24.1)
and for clamped edge conditions
T (X, or X, Y, Z) = 7 (X, or Xy, Y, Zy) = W (X, or Xy, ¥, Z;) =0
i=1,2,...,L; g=1,2,....M; f=1,2,...,R;, at the edges of constant x (242)

T"(X,, Y, or Yy, Z,) = 7("’()(,., Y; or Yy, Z;) = W(i)()(« Yy or Yy, Z;) =0
i=1,2,....L;, j=1,2,...K; f=1,2,...,R;, atthe edges of constant y

The normalised DQ surface conditions at the interior grid points (X, ¥,,,0) and (X, ¥,,, H) can be ex-
pressed as



K M. Liew et al. | International Journal of Solids and Structures 40 (2003) 1745-1764 1753

K
1 1] 3=(1) 1 1 1
S AR UV(X,7,,0) + C{}ZAYmg (X, 7,,0) + c§3}HIZA[Z}, '(Xe, Y, Z,) =0
j=1

K-1
(1
|0, S A7 (3, 1,000+ ZAZU ) 1o f>] o
=2
1 D, 1] (1)
Ci4} "B ZA[YmgW (Xe, Y, 0 ZAZU Xk> vaf) =0
P g=2

at the bottom surface of the bottom layer and

C§L}ZAXk, (X, %, H) C{L}ZAYmg '(Xe, Y, H) + C{L}HLZAZRLf (Xe, Yo, Zy) = —q(Xi, Yo)

7=1
K—1 RL
—(L 1 —(L
C! | HDL D A 70, Yo H) 5 3 Ay, U )<Xk,Ym,Zf>] —0
=2 7=1
D _
cit g, 2k ZA[Yl,Lg Xk, By ZAZRJ Xk,Ym,Z/)] 0
B, =2

at the top surface of the top layer
(25)

The normalised DQ interlaminar continuity conditions at an interior grid point (X, Y,,H") can be
expressed as

C;}ZA (X, Y, HY) +C“ZA[;,LgV< (Xi, Yo, HT) + CYH, ZAZR,W (Xi, Yo, Zp)
f=1

E =) ) H
:m{“‘”w R

K M .
Z "X, Y, H]) +ZA9,LgV“>(Xk,Yg71ﬂT)H

K-1 Ri
; 1] 770 1
Cl 1D AW (XA,-,YWHI.T)-FDE A T (X, Y Z)) (26)
j=2 i =1

4 p. M- B, R;
{i} i [ T E: (1
C44 I_ItFp gEZZAYmgW (XkaY H) Eile AZR V (Xkaymvz])
D, Y1 o b/ l
=G |Hip > A, 7 (X, Y, HT)+z<V<)— (“))]
P o=

where H denotes the thickness coordinate at interface between lower lamina and bonding layer, and
correspondmgly at (X, Y., HE )
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E =) i)\ H
m{“—”'(W A

K M
—(i 1 —(i+1
S AL T, T ) + 3 A TV H,‘ioH

J=1 g=1

+v

i+1 1 z+1
= C§1+ }ZAH Xj, m»Hzil)

i (i+1) i (i+1)
Hl} ZAYmg (X, Y Hz+1) + Cé{;l}Hl“ ZAglf (Xkﬂ Ymvzf)

=1
(27)
(+1) @ () =i+
G- ]{HrlDHrlZAEI](/W (‘XmeHzil) z(U -U )
j=2
0 1 Riv1 N
i l+ 1 i+1)
| g ,+1Dz+IZA (X;, Y, gﬁl)+m2Ag}fU (Xe, Yo, Zy)
=1

i (i+1) b — i+1
,+1—“ ZAymg Y1) 45 (7 =7

pgz

Rit

z 1 (i+1) (i+1)
Hipy—— . ZAYmg (X/ﬁYgﬂ z+1 ZAZI;’ X/ﬁYm?Zf)]

p g=2 ]+lj

C{z+1}

where HE | is the thickness coordinate at the interface between the bonding layer and the upper lamina, and
G is the shear modulus of the bonding layer.

In this study, various examples of laminates with various edge supports will be provided to demonstrate
the advantages of the present methodology. The following abbreviations will be used: SSSS stands for
simple support at the four edges, and SCSC for simple support at the two opposing edges and clamped
support at the other two edges. Finally, CCCC refers to clamp support at the four edges. For the following
analyses, E, & and v denote the modulus, thickness and Poisson’s ratio of the bonding layers.

3. Results and discussions

In this first example, we examine a three-ply (0°/90°/0°) simply supported square sandwich laminates of
various moduli ratios under uniform surface pressure. The material properties of the surface layers were the
same as those used by Srinivas and Rao (1970)

E E, E., E

2 =0.543103, —==0.530172, —-2%=0.23319, —==0.010776

E, E, E, E,

E G, G G (28)
== —0.0982 =0.262931, —==0.159914, —£=10.26681

L. 0.098276, Ex =0.26293 L. 0.159914, L. 0.2668

Variations of the ratios of material properties of the core layer to the surface layers are subsequently
considered. The thickness of the top and bottom plies is assumed to be one-tenth the thickness of the
laminates, while the latter is one-tenth of the in-plane dimension of the laminates. The transverse mesh
employed in this example is three grid points within the top and bottom plies, and five grid points in the
core layer, while the in-plane mesh grid distributions are listed in Table 1. The table shows a comparison
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Table 1
Comparison of normalised central deflections (WE,,/Hq) of simply supported square sandwich laminates [0°/90°/0°]
E./Ea E/Ex h (in.) v 7x7 9%x9 11 x 11 13 x 13
1 0.01 1073 0.01 757.68 754.79 751.55 751.27
0.3 758.40 755.57 752.36 752.09
1073 0.01 - - - -
0.3 758.40 755.32 751.99 751.65
1077 0.01 759.13 756.03 752.70 752.36
0.3 759.13 756.03 752.70 752.36
0.1 1073 0.01 - - - -
0.3 749.26 746.35 743.11 742.79
103 0.01 - - - -
0.3 758.31 755.22 751.90 751.56
1077 0.01 - - - -
0.3 759.13 756.03 752.70 752.36
1 1073 0.01 754.96 751.90 748.60 748.26
0.3 679.77 677.97 675.24 674.98
103 0.01 - - - -
0.3 757.53 754.46 751.14 750.80
1077 0.01 759.13 756.03 752.70 752.36
0.3 759.12 756.02 752.69 752.35
10 1073 0.01 741.54 738.72 735.52 735.19
0.3 351.01 352.17 351.33 351.27
103 0.01 - - - -
0.3 749.82 746.88 743.62 743.29
1077 0.01 759.12 756.02 752.68 752.32
0.3 759.03 755.97 752.60 752.25
Srinivas and Rao (1970) 688.58
{DQR} 690.96
5 0.01 1073 0.01 290.72 292.07 291.59 291.67
0.3 291.06 292.43 291.95 292.04
103 0.01 - - - -
0.3 290.91 292.21 291.73 291.80
1077 0.01 291.45 292.75 292.26 292.34
0.3 291.45 292.75 292.26 292.34
0.1 1073 0.01 - - - -
0.3 284.65 285.96 285.49 285.57
103 0.01 - - - -
0.3 290.84 292.15 291.66 291.73
107 0.01 - - - -
0.3 291.45 292.75 292.26 292.34
1 10°3 0.01 288.96 290.27 289.28 289.97
0.3 238.01 239.32 238.94 239.01
10-° 0.01 - - - -
0.3 290.26 291.57 291.08 291.16
1077 0.01 291.45 292.75 292.26 292.34
0.3 291.44 292.75 292.26 292.33
10 1073 0.01 279.23 280.53 280.07 280.15
0.3 89.40 90.07 89.97 90.00
10-° 0.01 - - - -
0.3 284.61 285.92 285.45 285.52
1077 0.01 291.45 292.76 292.27 292.30

(continued on next page)
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Table 1 (continued)

Eu/En E/E, h (in.) v 7x7 9%x9 11 x 11 13x 13
0.3 291.39 292.66 292.16 292.24

Srinivas and Rao (1970) 258.97

{DQR} 260.38

E,; is elastic modulus of the surface layers and E,, is elastic modulus of the core layer.

between the numerical results of central deflections obtained from the current 3D model of elastic
bonding with the analytical solutions of Srinivas and Rao (1970) based on a rigid bonding model. “DQR”
refers to results of rigid bonding model using the present DQ methodology. It can be observed that the
present model exhibits stable convergence characteristics. The results shown in Table 1 are quite distinct
from those of Srinivas and Rao (1970), stemming from the weakened rigidity of the elastically bonded
sandwich structures when compared with rigidly bonded structures treated by Srinivas and Rao (1970).
The results also reveal that the present approach is capable of accurately accounting for the influence of
the parameters which define the bonding layer; namely, the thickness, elastic modulus and Poisson’s ratio.
This is due to the fact that the current DQ model employs rigorous three-dimensional elastic modelling
techniques.

Table 2 gives the distribution of the normal stress g, through the thickness. The softer elastic bonding
results in the top ply carrying slightly larger stresses. As such, the central deflection and the stress o, are
generally larger when compared with the corresponding results of the rigid bonding case of Srinivas and
Rao (1970).

Table 2
Comparison of normalised central normal stress (g, /¢) of simply supported square sandwich laminates [0°/90°/0°] for v = 0.3
E./E, h (in.) E/Ey» Bottom ply Bottom ply Mid ply at Mid ply at Top ply at  Top ply at
at bottom at interface lower inter-  upper inter-  interface top surface
surface face face

1 1073 0.01 38.350 30.256 30.282 -31.507 —31.469 —39.631

0.1 37.966 29.982 29911 -31.097 -31.167 —-39.233

1 34.354 27.124 27.050 —28.140 -28.214 -35.479

1073 0.01 38.707 30.618 30.618 -31.032 -31.031 -39.153

0.1 38.817 30.748 30.747 -30.895 -30.896 —-39.035

1 38.500 30.450 30.449 —-31.062 -31.063 -39.074

Srinivas and Rao (1970) 35.937 28.454 28.454 —28.538 —28.538 -36.021

{DQR} 36.053 28.544 28.544 —-28.599 —-28.599 -36.109

5 1073 0.01 67.242 52.146 10.427 —10.598 -52.932 —67.856

0.1 65.851 51.096 10.191 —-10.365 —51.888 -66.472

1 54.696 42.497 8.4719 —8.6360 —43.242 -55.272

1073 0.01 67.058 51.759 10.351 —-10.583 -52.836 —68.297

0.1 66.943 51.865 10.372 —-10.607 -52.963 —67.846

1 67.314 52.043 10.408 -10.479 -52.317 -67.735

Srinivas and Rao (1970) 60.155 46.426 9.2845 —-9.3402 —46.623 —-60.353

{DQR} 60.412 46.621 9.323 -9.368 —46.760 —60.558

E,, is elastic modulus of the surface layers and E,, is elastic modulus of the core layer.
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Table 3
Comparison of normalised central deflections, W x 10°/g, (panel A) and central stresses o, /¢ (panel B) of simply supported laminates
[0°/90°/0°] for @ = 200 in

a/b h (in.) E=10° E=15x10° E =20x10°
v=10.01 v=0.3 v=0.01 vy=0.3 v =0.01 v=20.3
Panel A
Hla=0.14
3 1073 Present 15.199 15.194 15.198 15.190 15.198 15.186
ANSYS 14.886 14.886 14.885 14.885 14.885 14.885
1077 Present 15.201 15.199 15.201 15.198 15.201 15.197
ANSYS 14.888 14.888 14.888 14.888 14.888 14.888
Liew et al. (1996) 14.399
{DQR} 14.432
5 1073 Present 2.9893 2.9892 2.9892 2.9888 2.9892 2.9884
ANSYS 3.0203 3.0203 3.0201 3.0201 3.0201 3.0201
1077 Present 2.9896 2.9896 2.9896 2.9895 2.9896 2.9895
ANSYS 3.0206 3.0206 3.0206 3.0206 3.0206 3.0206
Liew et al. (1996) 3.0326
{DQR} 2.9568
Hla=0.2
3 10-3 Present 6.7138 6.7135 6.7137 6.7128 6.7137 6.7122
ANSYS 6.7334 6.7334 6.7331 6.7332 6.7330 6.7331
1077 Present 6.7145 6.7144 6.7145 6.7144 6.7145 6.7143
ANSYS 6.7339 6.7339 6.7339 6.7339 6.7339 6.7339
Liew et al. (1996) 6.5260
{DQR} 6.4197
5 1073 Present 1.4334 1.4335 1.4334 1.4334 1.4334 1.4334
ANSYS 1.6096 1.6096 1.6095 1.6095 1.6095 1.6095
1077 Present 1.4335 1.4336 1.4335 1.4336 1.4335 1.4336
ANSYS 1.6097 1.6097 1.6097 1.6097 1.6097 1.6097
Liew et al. (1996) 1.6113
{DQR} 1.4245
Panel B
Hla=0.14
3 1073 Present 2.3987 2.3926 2.3986 2.3892 2.3986 2.3856
ANSYS 2.0670 2.0670 2.0670 2.0670 2.0669 2.0669
1077 Present 2.2398 2.3001 2.3508 2.2272 2.4304 2.2479
ANSYS 2.0672 2.0672 2.0672 2.0672 2.0672 2.0672
Liew et al. (1996) 1.9580
{DQR} 2.0997
5 1073 Present 0.9947 0.9949 0.9947 0.9949 0.9947 0.9950
ANSYS 0.6695 0.6695 0.6695 0.6695 0.6695 0.6695
1077 Present 0.9973 0.9936 0.9967 0.9976 0.9923 0.9979
ANSYS 0.6696 0.6696 0.6696 0.6696 0.6696 0.6696
Liew et al. (1996) 0.6549
{DQR} 0.7192
Hla=0.2
3 1073 Present 1.4299 1.4291 1.4309 1.4308 1.4304 1.4300
ANSYS 1.0416 1.0416 1.0415 1.0415 1.0415 1.0415

(continued on next page)
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Table 3 (continued)

a/b h (in.) E =10° E=15x10° E =20 x10°
v=10.01 v=20.3 v=10.01 v=20.3 v=10.01 v=20.3
1077 Present 1.4376 1.4158 1.4353 1.4487 1.4345 1.4170
ANSYS 1.0416 1.0416 1.0416 1.0416 1.0416 1.0416
Liew et al. (1996) 0.9350
{DQR} 1.0421
5 1073 Present 0.5485 0.5542 0.5497 0.5397 0.5343 0.5393
ANSYS 0.3416 0.3416 0.3416 0.3416 0.3416 0.3416
1077 Present 0.5997 0.5718 0.5635 0.5765 0.5737 0.5806
ANSYS 0.3416 0.3416 0.3416 0.3416 0.3416 0.3416
Liew et al. (1996) 0.3192
{DQR} 0.3216
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Fig. 2. Stress distributions through thickness of three-ply (0°/90°/0°) laminates (H/a = 0.2, a/b =3, h = 1073, v = 0.3 and a = 200 in.)
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The second example considers the global response of three-ply (identical thickness) (0°/90°/0°) simply
supported rectangular laminates of various in-plane dimensions under uniform surface pressure. The

material properties are similar to those used by Liew et al. (1996)

E, _ E; _ E _

E_o = 20.83, £ 10.94, 5 1

G610, 95371, %2 _g19 (29)
0 Ey 0

Vip = Vi3 = V3 = 0.44

The results which are summarised in Table 3 reveal that the present elastic bonding model is quite
distinct from the earlier rigid and weak bonding models. This is because the introduction of the elastic

Thickness

09 06

Normalized Stress 0/qg

Fig. 3. Stress distributions through thickness of three-ply (0°/90°/0°) laminates (H/a = 0.2, a/b =3, h = 1073, v = 0.3 and a = 200 in.)

with SCSC edge conditions, under uniform load. (—O—, rigid bonding; ----O----, E = 10°;
E =20 x 10%.

ey, E=15% 100 <o A .-
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bonding layer influences the structural rigidity of the laminate. Interestingly, when the in-plane dimension
ratio of the laminate is quite large, i.e. the plate becomes beam-like, the central deflection approaches that
of the rigid bonding assumption.

For verification purposes, FE analysis was conducted using the commercial code ANSYS version 6.0.
Eight-noded quadrilateral element SHELL99 was used to model this problem. The SHELL99 element may
be used for layered shell structures, allowing for up to 250 layers. This element has six degrees-of-freedom
at each node, namely translations in the nodal x, y, z directions and rotations about the nodal x, y, z axes.
Converged results are obtained using a mesh distribution of 10 x 6 elements for the case a/b = 3, and
20 x 6 element for the case a/b = 5. Table 3 indicates that the results obtained are in general comparable to
those obtained from the present model. The slight discrepancies are due to the fact that SHELL99 cannot
accommodate transverse deformation and stresses, thus limiting its accuracy.

Let us now consider the influence of the mechanical properties of the bonding layer upon the central
deflection. For the case where a/b = 3 and H/a = 0.14, the rigid bonding model yields a normalised central
deflection W = 14.432, which is normalised by 10°/¢, with ¢ being the surface pressure. In the present

0-47... '..':.
12 09 06 3 00 03 D12 08 04 o0 o4 of

Thickness

-1.0 -08 -0.6 -0.4 -02 ) 00 3 2 -1 0 1 2 3 4 350"

:0'4:®1 g 'jjj _,}

42 00 oz et 04

Normalized Stress o/g

Fig. 4. Stress distributions through thickness of three-ply (0°/90°/0° ) laminates (H /a = 0.2, a/b =3, h = 1073, v = 0.3 and a = 200 in.)
with CCCC edge conditions, under uniform load. (—O—, rigid bonding; ----O----, E=10% X, E=15x10% .- A...
E =20 x 10°).
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elastic bonding model (v =0.3 and # = 1073 in.), for £ = 108, W = 15.144; for E =5 x 10}, W = 14.914;
and when E = 10°, W = 14.6385. This shows that when the bonding layer stiffens, the global deflection of
the structure approaches that of the rigid bonding model.

Figs. 2-4 show the variation of the normal and shear stresses through the thickness of the laminate. The
results also reveal that the maximum normal stresses occur at the centre of the plate while the maximum
shear stresses 1,,, 7, and t,, occur at locations (0, 0), (0, b/2), and (a/2, 0), respectively. One exceptional case
is the distribution of t,, for the fully clamped case where the maximum is located at the central point. Fig. 2
contrasts the stress distributions through thickness in laminated composites modelled in terms of the rigid
and elastic bonding assumptions. It reveals that both sets of results are distinctly different, especially for the
shear stress distribution.

In the third example, we consider three-ply laminates (0°/90°/0°) with identical thickness and different
support, with the same material properties as those of the last example. The elastic bonding model reveals
that significant discrepancies exist between the above shear stresses and those calculated using the rigid
bonding model. Table 4 and Fig. 3, and Table 5 and Fig. 4, illustrate the various central deflections and
stress distributions for laminates under support conditions of mixed clamped and fully clamped types,
respectively. We will now examine the transverse shear stress distributions for the various support con-
figurations in Figs. 2-4. The results show that for the simply supported SSSS and simply supported-
clamped SCSC cases, even with the present elastic bonding model, there is only a limited difference between
the transverse shear stresses of adjoining plies. However, in the fully clamped CCCC case, the usefulness of

Table 4
Comparison of normalised central deflections (W x 10°/q) of SCSC-supported laminates [0°/90°/0°], where the simply-supported edges
are at x = 0 and 4, and clamped edges are at y = 0 and b for the case a = 200 in.

a/b h (in.) E=10° E=15x10° E=20x10°
v=0.2 v=20.3 v=04 v=20.2 v=20.3 v=04 v=02 v=20.3 v=04

Hla = 0.14
103 6.9836 69835  6.9831 6.9831 6.9826 69812 69827  6.9818 6.9794
3 10- 69844 69843 69839 69844 69842 69836  6.9843 6.9840  6.9833
107 6.9844 69842 69839  6.9843 6.9841 6.9835 6.9843 6.9840  6.9832
Liew et al. (1996) 6.7577
{DQR} 6.9784
1073 1.8397 1.8397 1.8398 1.8396 1.8395 1.8394 1.8395 1.8394 1.8391
5 10- 1.8398 1.8398 1.8398 1.8398 1.8398 1.8397 1.8398 1.8397 1.8397
107 1.8398 1.8398 1.8398 1.8398 1.8398 1.8397 1.8398 1.8398 1.8397
Liew et al. (1996) 1.8913
(DQR} 1.8386
Hla=02
1073 3.9047 3.9047 3.9048 3.9046  3.9045 39042 3.9044 39042  3.9036
3 10- 3.9050  3.9049 3.9048 3.9050  3.9049  3.9048 39049  3.9049  3.9047
107 3.9050  3.9049 39049  3.9050  3.9049  3.9048 39050  3.9049  3.9047
Liew et al. (1996) 39116
{DQR} 3.9020
1073 1.0760 1.0760 1.0761 1.0760 1.0760 1.760 1.0759 1.0759 1.0759
5 10- 1.0761 1.0761 1.0761 1.0761 1.0761 1.0761 1.0761 1.0761 1.0761
1077 1.0761 1.0761 1.0761 1.0761 1.0761 1.0761 1.0761 1.0761 1.0761
Liew et al. (1996) 1.2202

(DQR} 1.0757




1762 K M. Liew et al. | International Journal of Solids and Structures 40 (2003) 1745-1764

Table 5
Comparison of normalised central deflections (W x 10°/q) of fully clamped (CCCC) laminates [0°/90°/0°] a = 200 in.
a/b h (in.) E=10° E=15x10° E=20x10°
v=0.2 v=03 v=04 v=0.2 v=0.3 v=04 v=02 v=0.3 v=04

H/a=0.14

3 1073 6.9136 6.9136 6.9136 6.9132 6.9129 6.9121 6.9128 6.9122 6.9106
1077 6.9139 6.9138 6.9139 6.9139 6.9139 6.9139 6.9139 6.9139 6.9139

Liew et al. (1996) 6.6931

{DQR} 6.9130

5 1073 1.8370 1.8371 1.8372 1.8369 1.8369 1.8369 1.8369 1.8368 1.8366
1077 1.8370 1.8370 1.8370 1.8370 1.8370 1.8370 1.8370 1.8370 1.8370

Liew et al. (1996) 1.8902

{DQR} 1.8368

H/a=0.2

3 1073 3.8655 3.8655 3.8656 3.8653 3.8653 3.8651 3.8652 3.8651 3.8647
1077 3.8655 3.8655 3.8655 3.8655 3.8655 3.8655 3.8655 3.8655 3.8655

Liew et al. (1996) 3.8696

{DQR} 3.8652

5 1073 1.0743 1.0743 1.0744 1.0743 1.0743 1.0743 1.0742 1.0742 1.0742
1077 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743

Liew et al. (1996) 1.2192

{DQR} 1.0742

Bonding
layer

Interface of
rigid bonding

G
Fig. 5. Blown-up diagram of Fig. 3(f): (---) current elastic bonding; (—) rigid bonding.

the present elastic bonding model is clearly evident. In particular, it has enabled us to determine the dif-
ferences that exist between the transverse shear stresses of adjoining plies. To illustrate this difference more
clearly, a blown-up diagram, Fig. 5, is plotted based on Fig. 3(f) as an example. In Fig. 5, the dashed line
AB'C'EFG represents the stress distribution obtained through the current elastic bonding model, while the
solid line ABCDE'G represents that of the rigid bonding model. The sections B'C’ and EF of elastic
bonding cannot be visualized in Figs. 2-4, while points B’, C’, E and F are vertically located along lamina
interface for the rigid bonding case.

4. Conclusions

Distinct from existing methods, such as the weak and rigid bonding models, this paper presents an elastic
bonding model embodied by a material bonding layer. Differential quadrature modelling scheme is de-
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veloped, incorporating three-dimensional elasticity theory, in a layerwise framework. Interfacial charac-
teristics of continuity and discontinuity fulfil the kinematic compatibility through the bonding layer. All the
physical equations governing the problem are satisfied and the results for some typical cases are investi-
gated. Validation tests through comparisons with finite element analysis and existing results from the open
literature are considered. A detailed study of the convergence characteristics of the present formulations has
also been conducted. All evidence indicates that the present three-dimensional layerwise DQ model of
elastic bonding is robust, effective, and accurate. This can be attributed to the strict theoretical foundation,
rational simplification of the bonding model, and the proper exploitation of the DQ method for the
computational scheme. Remarkably, the present elastic bonding model establishes a self-adjustable con-
figuration to simulate the diverse bonding characteristics in laminates. Unlike existing rigid or weak
bonding models, the present three-dimensional model exposes previously unknown mechanical features in
individual lamina.
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