
Three-dimensional modelling of elastic bonding in
composite laminates using layerwise differential quadrature

K.M. Liew a,*, Jordan Z. Zhang a, T.Y. Ng a,b, S.A. Meguid c

a Nanyang Centre for Supercomputing and Visualisation, School of Mechanical and Production Engineering,

Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore
b Institute of High Performance Computing, 89C Science Park Drive, #02-11/12, The Rutherford,

Singapore Science Park 1, Singapore 118261, Singapore
c Engineering Mechanics and Design Laboratory, University of Toronto, 5 King�s College Road, Toronto, Ont., Canada M5S 3G8

Received 30 October 2001; received in revised form 11 November 2002

Abstract

In an effort to overcome the limitations of existing rigid bonding analysis of composite laminates, the current three-

dimensional elastostatic model is proposed. In this model, the three-dimensional interlaminar elastic stress field is

determined using the technique of layerwise differential quadrature. The new formulations allowed us to determine the

influence of a natural bonding layer upon the field variables in the laminated structure. The interfacial characteristics of

continuity and discontinuity satisfy the kinematic continuity conditions through the elastic-bonding layer. A number

of case studies are examined, comparisons with rigid bonding and finite element analyses are provided, and the influence

of the pertinent parameters on the interlaminar stress field is evaluated and discussed.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

1.1. Background

Materials of laminated composite constitution have been utilized in a broad range of engineering ap-

plications, such as space and underwater exploration, aircraft structures, electronic and medical compo-

nents, high-end sporting equipment, just to name a few. In view of the anisotropic nature and complexities

of composite multi-layered bonded laminates, various modelling techniques had been proposed. To predict
the mechanical performance of laminated plates, for example, Ambartsumyan (1970), Reddy (1984a),

Whitney (1987), and Whitney and Leissa (1969), used the classical plate theory to approximate the overall
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response of the laminates. This is because the theory treats the plates as being infinitely rigid in the

transverse direction. The first and third-order theories (Stavsky, 1965; Yang et al., 1966; Whitney and

Pagano, 1970; Reddy, 1984b,c), to a certain extent, remedy these defects. However, the equivalent single

layer theory, directly evolved from conventional plate theory, remains unable to provide an accurate as-
sessment of the distribution of the stress components at the ply level. Noting these restrictions in traditional

plate and shell theories, the layerwise theory of Reddy (1987, 1989) was developed. Reddy assumed separate

displacement fields for each lamina, and compared with the equivalent single layer theories, providing a

possibility for accommodating the kinematical characteristics of the laminate. Distinct from the numerous

plate theories, Srinivas and Rao (1970) adopted three-dimensional elasticity theory to develop an analytical

model for laminated structures. They provided results for simply supported square sandwich laminates. For

other combinations of edge-support conditions, Liew et al. (2002) presented a set of three-dimensional

elasticity solutions for cross-ply laminates using the differential quadrature (DQ)-layerwise modeling
technique.

In the conventional analysis of laminated composites mentioned above, the composite interfaces are

always assumed to be rigidly bonded, i.e., the displacements of the composite interfaces are single valued.

The influence of the relatively low shear modulus of the matrix material is most prevalent at the ply in-

terface. This fact, coupled with the possible defective bonding of laminates, may lead to an elastic or weak

interlayer connection. Indeed, it has been recognized, see Lu and Liu (1992), that the low shear modulus of

the polymer matrix materials has significant effects on the transverse shear deformation. Consequently, the

interfacial conditions can strongly affect the service characteristics of laminates. In order to provide a
proper assessment of the performance of composite laminates, it is of vital importance to account for the

bonding condition accurately. This can be achieved by combining the transverse shear effects with the

continuity requirements for both displacements and interlaminar stresses of the composite interface.

The study of non-rigidly bonded interfaces in composite structures was pioneered by Newmark et al.

(1951) and later by Goodman (1967), where based on the Euler–Bernoulli beam theory, a laminated beam

theory with linear shear slip in the layer interface was developed. Toledano and Murakami (1988) used a

laminate theory, accounting for both transverse shear effect and interlaminar shear stress continuity, to

study non-rigid bonding effects. Elastic studies of sandwich beams with non-rigid bonding were also pre-
sented by Rao and Ghosh (1980) and Fazio et al. (1982).

There are basically three model types of weak bonding between layers. They are shear modelling with

slip between layers; normal separation modelling with an opening between layers; and general weak

bonding that combines both of the preceding models. The concept of weakly bonded layers has been in-

troduced by permitting a certain displacement jump, see Lu and Liu (1992) and Liu et al. (1994), at an

interface. These authors related the interfacial jump to the interlaminar stress, through appropriate con-

stitutive relations, which establish an equivalent stiffness along the jump direction.

In this paper, the authors overcame some of the limitations of existing rigid and non-rigid models by
adopting an innovative technique, which considers the elasticity of the bonding layer using three dimensional

elasticity and the DQ method. In the following section, we provide a brief summary of the DQ method.

1.2. Differential quadrature method

In spite of its flexibility and readiness to deal with most engineering problems, in the current application

the finite element method suffers from the following drawbacks. First, the size anomaly between the laminae

and the bonding layers presents severe difficulties in discretisation. Either a very extensive use of elements is

required or a highly distorted mesh is tolerated, thus affecting the accuracy of the results. Second, in view of

the three-dimensional nature of the considered problem, it is very difficult to obtain an assessment of the

resulting error level. Third, it is a numerical method requiring the appropriate software and experience to
apply it properly.

1746 K.M. Liew et al. / International Journal of Solids and Structures 40 (2003) 1745–1764



Therefore, there is much incentive to develop more accurate analytical modelling tools for treating

composite laminates. The DQ method is a prospective numerical alternative originated by Bellman (1973)

to solve linear and nonlinear differential equations. The basic idea of the DQ method is that the partial

derivative of a function with respect to a variable at a given discrete point can be approximated as a
weighted linear sum of the function values at all discrete points in the domain of that variable, i.e.,

f 0ðxiÞ ffi
XNg
j¼1

Aijf ðxjÞ; i ¼ 1; 2; . . . ;Ng ð1Þ

where f ðxÞ is the function that represents the real physical field, Ng is the number of spacing grid points, and
Aij the weighting coefficients to be determined. The DQ method is briefly outlined here and the readers are

advised to see Shu (1991) for further details. Let us select the trial function VHðxÞ to be Lagrange�s inter-
polation polynomials, viz,

VHðxÞ ¼
LNgðxÞ

ðx� xHÞL½1�NgðxHÞ
; H ¼ 1; 2; . . . ;Ng ð2Þ

where

LNgðxÞ ¼
YNg
a¼1

ðx� xaÞ ð3Þ

L½1�NgðxHÞ is the first derivatives of LNgðxÞ with respect to x

L½1�NgðxHÞ ¼
YNg
a¼1
H 6¼a

ðxH � xaÞ ð4Þ

Substituting Eq. (2) into Eq. (1), the weighting coefficients of the first order derivatives are

Af1g
ia ¼

L½1�Ng ðxiÞ

ðxi�xaÞL½1�Ng ðxaÞ
; i 6¼ a

Af1g
ii ¼

L½2�Ng ðxiÞ

2L½1�Ng ðxiÞ
; i ¼ a

8>><
>>: ð5Þ

Similarly, we may obtain the weighting coefficients for higher-order derivative through this scheme. The

coordinate variable x with the subscript i refers to the spatial position of the grid point, and the usual
spacing patterns of these grid points in the DQ method are

ðIÞ Equal spacing : xi ¼
i� 1

Ng � 1
; i ¼ 1; 2; . . . ;Ng ð6Þ

and

ðIIÞ Cosine spacing : xi ¼
1� cos i�1

Ng�1 p

2
; i ¼ 1; 2; . . . ;Ng ð7Þ

The latter spacing pattern is employed in this paper because of its stable convergence characteristics in plate

analysis (Liew et al., 1999, 2001).

The advantages of the DQ method lie in the simplicity of the devised algorithms and the use of gross grid

point distributions, leading to efficient computation and flexible discretization. It also has the added ad-
vantage of providing highly accurate results, because it implements higher-order interpolation (shape)

functions with ease.
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Since its introduction, the DQ method has been applied to various engineering mechanics problems, such

as bending, vibration and buckling of beams, columns and plates, including thin, thick and laminated

composite plates. The successful implementation of this method has been reported in literature; see the

works of Bert et al. (1988), Jang et al. (1989), Farsa et al. (1993) and Han and Liew (1997). These works,
amongst others, culminated in a comprehensive review of the development and application of DQ method

in computational mechanics presented by Bert and Malik (1996).

2. Interface modelling in elastic bonding

2.1. Physical model of elastic bonding

Consider a rectangular L-layer laminate, L being the total number of layers, and hi the thickness of the
ith lamina, as depicted in Fig. 1. Any two adjacent laminae are bonded together, particularly in the in-
termediate region of the composite, by a natural (isotropic or anisotropic) layer of thickness h. h is assumed
to be very thin in comparison with the thickness of the adjacent laminae. For example, h=hk � 0:001, with
hk being the thickness of the kth layer of the laminate. Since each layer consists of fibres, which are ran-
domly distributed in the matrix, the considered system can be regarded as homogenous and isotropic.

In the current model, the natural layer is assumed to be rigidly bonded to the neighbouring laminae.

Consequently, the continuity conditions of displacements are satisfied, and the continuity conditions of the

transverse stresses are enforced along the interfaces between the bonding layer and each of the neigh-

bouring laminae. The rigid bonding model, on the other hand, does not cater for any deformable behaviour

along the interface of two bordering laminae. It is also worth noting that the weak bonding model accounts

for the relative movement through a series of independent three dimensional springs linking two material

points, initially on opposite sides of the interface, via constitutive relations of displacement jumps and the
corresponding stresses. The shortcomings of the latter are twofold. First, discrete springs are incapable of

capturing the bonding interaction between layers. Second, the stiffnesses of the springs in three spatial

directions of one material point are difficult to determine accurately as the stiffnesses are mutually related.

2.2. Theoretical model of elastic bonding

To establish a precise theoretical basis for elastic bonding suitable for the diverse situations encountered

in engineering applications, the authors propose to integrate three-dimensional elasticity theory within the

framework of layerwise theory.

Fig. 1. The laminated plate structure with the bonding layers.
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Supposing that the displacements in the x, y and z directions Ui, Vi and Wi , of the ith layer are given by

Ui ¼ uiðx; y; zÞ; Vi ¼ viðx; y; zÞ; Wi ¼ wiðx; y; zÞ; i ¼ 1; 2; 3; . . . L ð8Þ

then the strain–displacement relations can be written as

ex ¼
ou
ox

; ey ¼
ov
oy

; ez ¼
ow
oz

cxy ¼
ou
oy

þ ov
ox

; cyz ¼
ov
oz

þ ow
oy

; czx ¼
ow
ox

þ ou
oz

ð9Þ

where ex, ey and ez are the normal strains, u, v, w are displacements in x, y, z directions, and cxy , cyz, and czx
are the shear strains in the x–y, y–z and z–x planes, respectively. Substituting Eq. (8) into Eq. (9), we obtain
the strain field for the ith layer

eðiÞx ¼ oUi

ox
; eðiÞy ¼ oVi

oy
; eðiÞz ¼ oWi

oz

cðiÞxy ¼
oUi

oy
þ oVi

ox
; cðiÞyz ¼ oVi

oz
þ oWi

oy
; cðiÞzx ¼ oWi

ox
þ oUi

oz

ð10Þ

The constitutive relations are written as

rx; ry ; rz; syz; szx; sxy
� �T ¼ ½Cij� � ex; ey ; ez; cyz; czx; cxy

� �T ð11Þ

where rx, ry , rz are normal stresses, syz, szx, sxy are shear stresses, and Cij (i; j ¼ 1; 2; . . . ; 6) is the stiffness
matrix. The equations of equilibrium for each laminae and bonding layer are

orx
ox

þ osxy
oy

þ osxz
oz

¼ 0;
ory
oy

þ osxy
ox

þ osyz
oz

¼ 0;
orz
oz

þ osxz
ox

þ osyz
oy

¼ 0 ð12Þ

In this work, it is proposed that the variations of the thickness components of the transverse strains are

proportional to the displacement jump between the surfaces of the bonding layer. This assumption is

reasonable and can be justified by the fact that the bonding layer is typically thin.

At the interface between the ith lamina and a bonding layer,

eðiÞz ¼ �
W u
i � W d

iþ1
h

; cðiÞyz ¼
V u
i � V d

iþ1
h

þ oWi

oy
; cðiÞzx ¼ oWi

ox
þ Uu

i � Ud
iþ1

h
ð13:1Þ

and at the interface between a bonding layer and iþ 1th lamina

eðiþ1Þz ¼ �
W u
i � W d

iþ1
h

; cðiþ1Þyz ¼ �
V u
i � V d

iþ1
h

þ oWi

oy
; cðiþ1Þzx ¼ oWi

ox
� Uu

i � Ud
iþ1

h
ð13:2Þ

where the superscripts u and d refer to the upper and lower surfaces of the bonding layer, respectively.
From Eq. (13), it should be noted that only the transverse components of the strains are linearly sim-

plified, while the in-plane components remain unchanged. This is crucial for the present model, which

accounts for the effects of in-plane deformation in the bonding layers. Distinct from the discrete spring

model of weak bonding, the present model is treated as a continuum.

The simply supported edge conditions can be defined as

w ¼ rx ¼ sxy ¼ 0; at the edges of x ¼ constant

w ¼ ry ¼ sxy ¼ 0; at the edges of y ¼ constant
ð14:1Þ
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while the clamped edge conditions can be defined as

u ¼ v ¼ w ¼ 0; at the edges of x; y ¼ constant ð14:2Þ
and the surface conditions as being

rz ¼ sxz ¼ syz ¼ 0; at bottom of laminate

rz ¼ �q; sxz ¼ syz ¼ 0; at top of laminate
ð15Þ

where q is the surface loading.
Obviously, the interfacial characteristics of rigid bonding such as continuity/discontinuity of displace-

ments, and strains and stresses no longer hold, and the corresponding constraints are transferred through

the material bonding layer, Fig. 1(b). At the interface between the lower lamina and the bonding layer, the

constraints of continuity of the elastic bonding are

rðiÞ
z

sðiÞzx
sðiÞzy

8><
>:

9>=
>;

top

¼
rðBLÞ
z

sðBLÞzx

sðBLÞzy

8><
>:

9>=
>;

bottom

; i ¼ 1; 2; . . . ; L� 1 ð16Þ

and at the interface between the bonding layer and the upper lamina are

rðBLÞ
z

sðBLÞzx

sðBLÞzy

8><
>:

9>=
>;

top

¼
rðiþ1Þ
z

sðiþ1Þzx

sðiþ1Þzy

8><
>:

9>=
>;

bottom

; i ¼ 2; . . . ; L� 1; L ð17Þ

where the superscripts of the stress notations, i or iþ 1, indicate the lamina position, and BL refers to the

bonding layer. According to DQ methodology, all governing equations can be expressed in terms of the
derivatives of displacements. Thus, the results obtained from this model are accurate three-dimensional

numerical solutions. Substituting Eq. (9) into Eq. (11), and assuming orthotropy of the laminae, we can

obtain

rx ¼ C11
ou
ox

þ C12
ov
oy

þ C13
ow
oz

; ry ¼ C21
ou
ox

þ C22
ov
oy

þ C23
ow
oz

; rz ¼ C31
ou
ox

þ C32
ov
oy

þ C33
ow
oz

syz ¼ C44
ov
oz

�
þ ow

oy



; szx ¼ C55

ow
ox

�
þ ou

oz



; sxy ¼ C66

ou
oy

�
þ ov
ox



ð18Þ

For simplicity, the following variables are normalised as

X ¼ x
a
; Y ¼ y

b
; Zi ¼

z
hi

U ¼ u
a
; V ¼ v

b
; W ¼ w

H

ð19Þ

where Zi is the thickness coordinate of the ith layer, a and b are the length and width of the laminate,
respectively. Let us now define

H ¼
X

hi þ ðL� 1Þ � h
b
a
¼ Bp;

hi
a
¼ Di;

H
hi

¼ Hi

ð20Þ
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The normalised equilibrium equations for the ith lamina (i ¼ 1; 2; . . . ; L) can then be expressed as

B2pC11
o2U
oX 2

þ C66
o2U
oY 2

þ Bp
Di

� 
2

C55
o2U
oZ2i

þ B2pðC12 þ C66Þ
o2V
oXoY

þ B2pHiðC13 þ C55Þ
o2W
oXoZi

¼ 0

1

B2p
ðC21 þ C66Þ

o2U
oXoY

þ C66
o2V
oX 2

þ 1

B2p
C22

o2V
oY 2

þ 1

D2
i
C44

o2V
oZ2i

þ Hi

B2p
ðC23 þ C44Þ

o2W
oY oZi

¼ 0

1

D2
i
ðC31 þ C55Þ

o2U
oXoZi

þ 1

D2
i
ðC32 þ C44Þ

o2V
oY oZi

þ HiC55
o2W
oX 2

þ Hi

B2p
C44

o2W
oY 2

þ Hi

D2
i
C33

o2W
oZ2i

¼ 0

ð21Þ

The support conditions of Eq. (14) can be normalised as follows: for the simply supported edge conditions

W ¼ 0; C11
oU
oX

þ C12
oV
oY

þ C13
oW
oZi

¼ 0; C66
1

Bp

oU
oY

�
þ Bp

oV
oX



¼ 0; at the edges of constant x

W ¼ 0; C21
oU
oX

þ C22
oV
oY

þ C23
oW
oZi

¼ 0; C66
1

Bp

oU
oY

�
þ Bp

oV
oX



¼ 0; at the edges of constant y

ð22:1Þ
and for the clamped edge conditions

U ¼ V ¼ W ¼ 0; at the edges of x; y ¼ constant ð22:2Þ
In view of DQ methodology (Eq. (1)), the equilibrium equations at the interior domain, boundary

conditions, and interface continuity conditions can be formulated in terms of displacement variables and

the corresponding weighting coefficients in a discretized DQ format.

The normalised DQ equilibrium equations at an interior grid point (Xk; Ym; Zr) can be expressed as

B2pC
fig
11

XK
j¼1

A½2�
XkjU

ðiÞðXj; Ym; ZrÞ þ Cfig
66

XM
g¼1

A½2�
YmgU

ðiÞðXk; Yg; ZrÞ þ
Bp
Di

� 
2

Cfig
55

XRi
f¼1

A½2�
ZrfU

ðiÞðXk; Ym; Zf Þ

þ B2p Cfig
12

�
þ Cfig

66

�XK
j¼1

A½1�
Xkj �

XM
g¼1

A½1�
YmgV

ðiÞðXj; Yg; ZrÞ
" #

þ B2pHi C
fig
13

�
þ Cfig

55

�XK�1
j¼2

A½1�
Xkj �

XRi
f¼1

A½1�
Zrf W

ðiÞðXj; Ym;Zf Þ
" #

¼ 0

1

B2p
Cfig
21

�
þ Cfig

66

�XM
g¼1

A½1�
Ymg �

XK
j¼1

A½1�
XkjU

ðiÞðXj; Yg;ZrÞ
" #

þ Cfig
66

XK
j¼1

A½2�
XkjV

ðiÞðXj; Ym; ZrÞ

þ 1

B2p
Cfig
22

XM
g¼1

A½2�
YmgV

ðiÞðXk; Yg; ZrÞ þ
1

D2
i
Cfig
44

XRi
f¼1

A½2�
Zrf V

ðiÞðXk; Ym; Zf Þ

þ Hi

B2p
Cfig
23

�
þ Cfig

44

�XM�1

g¼2
A½1�
Ymg �

XRi
f¼1

A½1�
Zrf W

ðiÞðXk; Yg; Zf Þ
" #

¼ 0

1

D2
i
Cfig
31

�
þ Cfig

55

�XK
j¼1

A½1�
Xkj �

XRi
f¼1

A½1�
Zrf U

ðiÞ
Xj; Ym; Zf
� �" #

þ 1

D2
i
Cfig
32

�
þ Cfig

44

�XM
g¼1

A½1�
Ymg �

XRi
f¼1

A½1�
Zrf V

ðiÞ
Xk; Yg; Zf
� �" #

þ HiC
fig
55

XK�1
j¼2

A½2�
XkjW

ðiÞðXj; Ym; ZrÞ

þ Hi

B2p
Cfig
44

XM�1

g¼2
A½2�
YmgW

ðiÞðXk; Yg; ZrÞ þ
Hi

D2
i
Cfig
33

XRi
f¼1

A½2�
ZrfW

ðiÞðXk; Ym; Zf Þ ¼ 0; i ¼ 1; 2; . . . ; L

ð23Þ
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where (Xk; Ym; Zr) is an interior grid point. A�s are the weighting coefficients, whose superscript indicates the
order of derivation. The capital letter in the subscript indicates the coordinate direction of derivation, with

the lower letters referring to the grid points. U , V and W are displacements whose superscript refers to the

layer. K, M , and Ri represent discrete numbers along the x, y and z directions within the ith layer. The
superscript of the stiffness coefficient C of the laminate material refers to the layer sequential number.

The normalised DQ support conditions for different boundaries are given as

For simply supported edge conditions

W
ðiÞðX1 or XK ; Yg; Zf Þ ¼ 0; i ¼ 1; 2; . . . ; L; g ¼ 1; 2; . . . ;M ; f ¼ 1; 2; . . . ;Ri

Cfig
11

XK
j¼1

A½1�
X1jU

ðiÞðXj; Yg; Zf Þ þ Cfig
12

XM
m¼1

A½1�
YgmV

ðiÞðX1; Ym; Zf Þ þ Cfig
13 Hi

XRi
q¼1

A½1�
ZfqW

ðiÞðX1; Yg; ZqÞ ¼ 0

or

Cfig
11

XK
j¼1

A½1�
XKjU

ðiÞðXj; Yg; Zf Þ þ Cfig
12

XM
m¼1

A½1�
YgmV

ðiÞðXK ; Ym; Zf Þ þ Cfig
13 Hi

XRi
q¼1

A½1�
ZfqW

ðiÞðXK ; Yg; ZqÞ ¼ 0

Cfig
66 Bp

XK
j¼1

A½1�
X1jV

ðiÞðXj; Yg; Zf Þ
"

þ 1

Bp

XM
m¼1

A½1�
YgmU

ðiÞðX1; Ym; Zf Þ
#
¼ 0

or

Cfig
66 Bp

XK
j¼1

A½1�
XKjV

ðiÞðXj; Yg; Zf Þ
"

þ 1

Bp

XM
m¼1

A½1�
YgmU

ðiÞðXK ; Ym; Zf Þ
#
¼ 0 at the edges of constant x

W
ðiÞðXj; Y1 or YM ; Zf Þ ¼ 0; i ¼ 1; 2; . . . ; L; j ¼ 1; 2; . . . ;K; f ¼ 1; 2; . . . ;Ri

Cfig
21

XK
k¼1

A½1�
XjkU

ðiÞðXk; Y1; Zf Þ þ Cfig
22

XM
m¼1

A½1�
Y 1mV

ðiÞðXj; Ym; Zf Þ þ Cfig
23 Hi

XRi
q¼1

A½1�
ZfqW

ðiÞðXj; Y1; ZqÞ ¼ 0

or

Cfig
21

XK
k¼1

A½1�
XjkU

ðiÞðXk; YM ; Zf Þ þ Cfig
22

XM
m¼1

A½1�
YMmV

ðiÞðXj; Ym; Zf Þ þ Cfig
23 Hi

XRi
q¼1

A½1�
ZfqW

ðiÞðXj; YM ; ZqÞ ¼ 0

Cfig
66 Bp

XK
k¼1

A½1�
XjkV

ðiÞðXk; Y1; Zf Þ
"

þ 1

Bp

XM
m¼1

A½1�
Y 1mU

ðiÞðXj; Ym; Zf Þ
#
¼ 0 or

Cfig
66 Bp

XK
k¼1

A½1�
XjkV

ðiÞðXk; YM ; Zf Þ
"

þ 1

Bp

XM
m¼1

A½1�
YMmU

ðiÞðXj; Ym; Zf Þ
#
¼ 0 at the edges of constant y

ð24:1Þ
and for clamped edge conditions

U
ðiÞðX1 or XK ; Yg; Zf Þ ¼ V

ðiÞðX1 or XK ; Yg; Zf Þ ¼ W
ðiÞ
X1 or XK ; Yg; Zf
� �

¼ 0

i ¼ 1; 2; . . . ; L; g ¼ 1; 2; . . . ;M ; f ¼ 1; 2; . . . ;Ri; at the edges of constant x

U
ðiÞðXj; Y1 or YM ; Zf Þ ¼ V

ðiÞðXj; Y1 or YM ; Zf Þ ¼ W
ðiÞðXj; Y1 or YM ; Zf Þ ¼ 0

i ¼ 1; 2; . . . ; L; j ¼ 1; 2; . . . ;K; f ¼ 1; 2; . . . ;Ri; at the edges of constant y

ð24:2Þ

The normalised DQ surface conditions at the interior grid points (Xk; Ym; 0) and (Xk; Ym;H ) can be ex-
pressed as
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Cf1g
31

XK
j¼1

A½1�
XkjU

ð1ÞðXj;Ym;0ÞþCf1g
32

XM
g¼1

A½1�
YmgV

ð1ÞðXk;Yg;0ÞþCf1g
33 H1

XR1
f¼1

A½1�
Z1fW

ð1ÞðXk;Ym;Zf Þ ¼ 0

Cf1g
55 H1D1

XK�1
j¼2

A½1�
XkjW

ð1ÞðXj;Ym;0Þ
"

þ 1

D1

XR1
f¼1

A½1�
Z1f U

ð1ÞðXk;Ym;Zf Þ
#
¼ 0

Cf1g
44 H1

D1

Bp

XM�1

g¼2
A½1�
YmgW

ð1ÞðXk;Yg;0Þ
"

þ Bp
D1

XR1
f¼1

A½1�
Z1f V

ð1ÞðXk;Ym;Zf Þ
#
¼ 0

at the bottom surface of the bottom layer and

CfLg
31

XK
j¼1

A½1�
XkjU

ðLÞðXj;Ym;HÞþCfLg
32

XM
g¼1

A½1�
YmgV

ðLÞðXk;Yg;HÞþCfLg
33 HL

XRL
f¼1

A½1�
ZRLf W

ðLÞðXk;Ym;Zf Þ ¼�qðXk;YmÞ

CfLg
55 HLDL

XK�1
j¼2

A½1�
XkjW

ðLÞðXj;Ym;HÞ
"

þ 1

DL

XRL
f¼1

A½1�
ZRLf

U
ðLÞðXk;Ym;Zf Þ

#
¼ 0

CfLg
44 HL

DL

Bp

XM�1

g¼2
A½1�
YmgW

ðLÞðXk;Yg;HÞ
"

þ Bp
DL

XRL
f¼1

A½1�
ZRLf

V
ðLÞðXk;Ym;Zf Þ

#
¼ 0

at the top surface of the top layer

ð25Þ

The normalised DQ interlaminar continuity conditions at an interior grid point (Xk; Ym;HT
i ) can be

expressed as

Cfig
31

XK
j¼1

A½1�
XkjU

ðiÞðXj; Ym;HT
i Þ þ Cfig

32

XM
g¼1

A½1�
YmgV

ðiÞðXk; Yg;HT
i Þ þ Cfig

33 Hi

XRi
f¼1

A½1�
ZRif W

ðiÞðXk; Ym; Zf Þ

¼ E
ð1þ mÞ � ð1� 2mÞ ð1

(
� mÞ � ðW ðiÞ � W

ðiþ1ÞÞH
h

þ m �
XK
j¼1

A½1�
XkjU

ðiÞðXj; Ym;HT
i Þ

"
þ
XM
g¼1

A½1�
YmgV

ðiÞðXk; Yg;HT
i Þ
#)

Cfig
55 HiDi

XK�1
j¼2

A½1�
XkjW

ðiÞðXj; Ym;HT
i Þ

"
þ 1

Di

XRi
f¼1

A½1�
ZRif U

ðiÞðXk; Ym; Zf Þ
#

¼ G � HiDi

XK�1
j¼2

A½1�
XkjW

ðiÞðXj; Ym;HT
i Þ

"
þ a
h
U

ðiÞ
�

� U
ðiþ1Þ

�#

Cfig
44 Hi

Di

Bp

XM�1

g¼2
A½1�
YmgW

ðiÞðXk; Yg;HT
i Þ

"
þ Bp
Di

XRi
f¼1

A½1�
ZRif V

ðiÞðXk; Ym; Zf Þ
#

¼ G � Hi
Di

Bp

XM�1

g¼2
A½1�
YmgW

ðiÞðXk; Yg;HT
i Þ

"
þ b
h
V

ðiÞ
�

� V
ðiþ1Þ

�#

ð26Þ

where HT
i denotes the thickness coordinate at interface between lower lamina and bonding layer, and

correspondingly at (Xk; Ym;HB
iþ1)
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E
ð1þ mÞ � ð1� 2mÞ ð1

(
� mÞ � W

ðiÞ
�

� W
ðiþ1Þ

�H
h

þ m
XK
j¼1

A½1�
XkjU

ðiþ1ÞðXj; Ym;HB
iþ1Þ

"
þ
XM
g¼1

A½1�
YmgV

ðiþ1ÞðXk; Yg;HB
iþ1Þ

#)

¼ Cfiþ1g
31

XK
j¼1

A½1�
XkjU

ðiþ1ÞðXj; Ym;HB
iþ1Þ

þ Cfiþ1g
32

XM
g¼1

A½1�
YmgV

ðiþ1ÞðXk; Yg;HB
iþ1Þ þ Cfiþ1g

33 Hiþ1
XRiþ1
f¼1

A½1�
Z1f W

ðiþ1Þ
Xk; Ym; Zf
� �

G � Hiþ1Diþ1
XK�1
j¼2

A½1�
XkjW

ðiþ1ÞðXj; Ym;HB
iþ1Þ

"
þ a
h
ðU ðiÞ � U

ðiþ1ÞÞ
#

¼ Cfiþ1g
55 Hiþ1Diþ1

XK�1
j¼2

A½1�
XkjW

ðiþ1ÞðXj; Ym;HB
iþ1Þ

"
þ 1

Diþ1

XRiþ1
f¼1

A½1�
Z1fU

ðiþ1ÞðXk; Ym; Zf Þ
#

G � Hiþ1
Diþ1

Bp

XM�1

g¼2
A½1�
YmgW

ðiþ1ÞðXk; Yg;HB
iþ1Þ

"
þ b
h
ðV ðiÞ � V

ðiþ1ÞÞ
#

¼ Cfiþ1g
44 Hiþ1

Diþ1

Bp

XM�1

g¼2
A½1�
YmgW

ðiþ1ÞðXk; Yg;HB
iþ1Þ

"
þ Bp
Diþ1

XRiþ1
f¼1

A½1�
Z1f V

ðiþ1ÞðXk; Ym; Zf Þ
#

ð27Þ

where HB
iþ1 is the thickness coordinate at the interface between the bonding layer and the upper lamina, and

G is the shear modulus of the bonding layer.

In this study, various examples of laminates with various edge supports will be provided to demonstrate
the advantages of the present methodology. The following abbreviations will be used: SSSS stands for

simple support at the four edges, and SCSC for simple support at the two opposing edges and clamped

support at the other two edges. Finally, CCCC refers to clamp support at the four edges. For the following

analyses, E, h and m denote the modulus, thickness and Poisson�s ratio of the bonding layers.

3. Results and discussions

In this first example, we examine a three-ply (0�/90�/0�) simply supported square sandwich laminates of
various moduli ratios under uniform surface pressure. The material properties of the surface layers were the

same as those used by Srinivas and Rao (1970)

Ey
Ex

¼ 0:543103;
Ez
Ex

¼ 0:530172;
Exy
Ex

¼ 0:23319;
Exz
Ex

¼ 0:010776

Eyz
Ex

¼ 0:098276;
Gxy

Ex
¼ 0:262931;

Gxz

Ex
¼ 0:159914;

Gyz

Ex
¼ 0:26681

ð28Þ

Variations of the ratios of material properties of the core layer to the surface layers are subsequently

considered. The thickness of the top and bottom plies is assumed to be one-tenth the thickness of the

laminates, while the latter is one-tenth of the in-plane dimension of the laminates. The transverse mesh

employed in this example is three grid points within the top and bottom plies, and five grid points in the
core layer, while the in-plane mesh grid distributions are listed in Table 1. The table shows a comparison
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Table 1

Comparison of normalised central deflections (WEx2=Hq) of simply supported square sandwich laminates [0�/90�/0�]

Ex1=Ex2 E=Ex2 h (in.) m 7� 7 9� 9 11� 11 13� 13

1 0.01 10�3 0.01 757.68 754.79 751.55 751.27

0.3 758.40 755.57 752.36 752.09

10�5 0.01 – – – –

0.3 758.40 755.32 751.99 751.65

10�7 0.01 759.13 756.03 752.70 752.36

0.3 759.13 756.03 752.70 752.36

0.1 10�3 0.01 – – – –

0.3 749.26 746.35 743.11 742.79

10�5 0.01 – – – –

0.3 758.31 755.22 751.90 751.56

10�7 0.01 – – – –

0.3 759.13 756.03 752.70 752.36

1 10�3 0.01 754.96 751.90 748.60 748.26

0.3 679.77 677.97 675.24 674.98

10�5 0.01 – – – –

0.3 757.53 754.46 751.14 750.80

10�7 0.01 759.13 756.03 752.70 752.36

0.3 759.12 756.02 752.69 752.35

10 10�3 0.01 741.54 738.72 735.52 735.19

0.3 351.01 352.17 351.33 351.27

10�5 0.01 – – – –

0.3 749.82 746.88 743.62 743.29

10�7 0.01 759.12 756.02 752.68 752.32

0.3 759.03 755.97 752.60 752.25

Srinivas and Rao (1970) 688.58

{DQR} 690.96

5 0.01 10�3 0.01 290.72 292.07 291.59 291.67

0.3 291.06 292.43 291.95 292.04

10�5 0.01 – – – –

0.3 290.91 292.21 291.73 291.80

10�7 0.01 291.45 292.75 292.26 292.34

0.3 291.45 292.75 292.26 292.34

0.1 10�3 0.01 – – – –

0.3 284.65 285.96 285.49 285.57

10�5 0.01 – – – –

0.3 290.84 292.15 291.66 291.73

10�7 0.01 – – – –

0.3 291.45 292.75 292.26 292.34

1 10�3 0.01 288.96 290.27 289.28 289.97

0.3 238.01 239.32 238.94 239.01

10�5 0.01 – – – –

0.3 290.26 291.57 291.08 291.16

10�7 0.01 291.45 292.75 292.26 292.34

0.3 291.44 292.75 292.26 292.33

10 10�3 0.01 279.23 280.53 280.07 280.15

0.3 89.40 90.07 89.97 90.00

10�5 0.01 – – – –

0.3 284.61 285.92 285.45 285.52

10�7 0.01 291.45 292.76 292.27 292.30

(continued on next page)
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between the numerical results of central deflections obtained from the current 3D model of elastic
bonding with the analytical solutions of Srinivas and Rao (1970) based on a rigid bonding model. ‘‘DQR’’

refers to results of rigid bonding model using the present DQ methodology. It can be observed that the

present model exhibits stable convergence characteristics. The results shown in Table 1 are quite distinct

from those of Srinivas and Rao (1970), stemming from the weakened rigidity of the elastically bonded

sandwich structures when compared with rigidly bonded structures treated by Srinivas and Rao (1970).

The results also reveal that the present approach is capable of accurately accounting for the influence of

the parameters which define the bonding layer; namely, the thickness, elastic modulus and Poisson�s ratio.
This is due to the fact that the current DQ model employs rigorous three-dimensional elastic modelling
techniques.

Table 2 gives the distribution of the normal stress rx through the thickness. The softer elastic bonding
results in the top ply carrying slightly larger stresses. As such, the central deflection and the stress rx are
generally larger when compared with the corresponding results of the rigid bonding case of Srinivas and

Rao (1970).

Table 2

Comparison of normalised central normal stress (rx=q) of simply supported square sandwich laminates [0�/90�/0�] for m ¼ 0:3

Ex1=Ex h (in.) E=Ex2 Bottom ply

at bottom

surface

Bottom ply

at interface

Mid ply at

lower inter-

face

Mid ply at

upper inter-

face

Top ply at

interface

Top ply at

top surface

1 10�3 0.01 38.350 30.256 30.282 )31.507 )31.469 )39.631
0.1 37.966 29.982 29.911 )31.097 )31.167 )39.233
1 34.354 27.124 27.050 )28.140 )28.214 )35.479

10�5 0.01 38.707 30.618 30.618 )31.032 )31.031 )39.153
0.1 38.817 30.748 30.747 )30.895 )30.896 )39.035
1 38.500 30.450 30.449 )31.062 )31.063 )39.074

Srinivas and Rao (1970) 35.937 28.454 28.454 )28.538 )28.538 )36.021
{DQR} 36.053 28.544 28.544 )28.599 )28.599 )36.109

5 10�3 0.01 67.242 52.146 10.427 )10.598 )52.932 )67.856
0.1 65.851 51.096 10.191 )10.365 )51.888 )66.472
1 54.696 42.497 8.4719 )8.6360 )43.242 )55.272

10�5 0.01 67.058 51.759 10.351 )10.583 )52.836 )68.297
0.1 66.943 51.865 10.372 )10.607 )52.963 )67.846
1 67.314 52.043 10.408 )10.479 )52.317 )67.735

Srinivas and Rao (1970) 60.155 46.426 9.2845 )9.3402 )46.623 )60.353
{DQR} 60.412 46.621 9.323 )9.368 )46.760 )60.558

Ex1 is elastic modulus of the surface layers and Ex2 is elastic modulus of the core layer.

Table 1 (continued)

Ex1=Ex2 E=Ex2 h (in.) m 7� 7 9� 9 11� 11 13� 13

0.3 291.39 292.66 292.16 292.24

Srinivas and Rao (1970) 258.97

{DQR} 260.38

Ex1 is elastic modulus of the surface layers and Ex2 is elastic modulus of the core layer.
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Table 3

Comparison of normalised central deflections, W � 106=q, (panel A) and central stresses rx=q (panel B) of simply supported laminates
[0�/90�/0�] for a ¼ 200 in

a=b h (in.) E ¼ 106 E ¼ 15� 106 E ¼ 20� 106

m ¼ 0:01 m ¼ 0:3 m ¼ 0:01 m ¼ 0:3 m ¼ 0:01 m ¼ 0:3

Panel A

H/a¼ 0.14
3 10�3 Present 15.199 15.194 15.198 15.190 15.198 15.186

ANSYS 14.886 14.886 14.885 14.885 14.885 14.885

10�7 Present 15.201 15.199 15.201 15.198 15.201 15.197

ANSYS 14.888 14.888 14.888 14.888 14.888 14.888

Liew et al. (1996) 14.399

{DQR} 14.432

5 10�3 Present 2.9893 2.9892 2.9892 2.9888 2.9892 2.9884

ANSYS 3.0203 3.0203 3.0201 3.0201 3.0201 3.0201

10�7 Present 2.9896 2.9896 2.9896 2.9895 2.9896 2.9895

ANSYS 3.0206 3.0206 3.0206 3.0206 3.0206 3.0206

Liew et al. (1996) 3.0326

{DQR} 2.9568

H/a¼ 0.2
3 10�3 Present 6.7138 6.7135 6.7137 6.7128 6.7137 6.7122

ANSYS 6.7334 6.7334 6.7331 6.7332 6.7330 6.7331

10�7 Present 6.7145 6.7144 6.7145 6.7144 6.7145 6.7143

ANSYS 6.7339 6.7339 6.7339 6.7339 6.7339 6.7339

Liew et al. (1996) 6.5260

{DQR} 6.4197

5 10�3 Present 1.4334 1.4335 1.4334 1.4334 1.4334 1.4334

ANSYS 1.6096 1.6096 1.6095 1.6095 1.6095 1.6095

10�7 Present 1.4335 1.4336 1.4335 1.4336 1.4335 1.4336

ANSYS 1.6097 1.6097 1.6097 1.6097 1.6097 1.6097

Liew et al. (1996) 1.6113

{DQR} 1.4245

Panel B

H/a¼ 0.14
3 10�3 Present 2.3987 2.3926 2.3986 2.3892 2.3986 2.3856

ANSYS 2.0670 2.0670 2.0670 2.0670 2.0669 2.0669

10�7 Present 2.2398 2.3001 2.3508 2.2272 2.4304 2.2479

ANSYS 2.0672 2.0672 2.0672 2.0672 2.0672 2.0672

Liew et al. (1996) 1.9580

{DQR} 2.0997

5 10�3 Present 0.9947 0.9949 0.9947 0.9949 0.9947 0.9950

ANSYS 0.6695 0.6695 0.6695 0.6695 0.6695 0.6695

10�7 Present 0.9973 0.9936 0.9967 0.9976 0.9923 0.9979

ANSYS 0.6696 0.6696 0.6696 0.6696 0.6696 0.6696

Liew et al. (1996) 0.6549

{DQR} 0.7192

H/a¼ 0.2
3 10�3 Present 1.4299 1.4291 1.4309 1.4308 1.4304 1.4300

ANSYS 1.0416 1.0416 1.0415 1.0415 1.0415 1.0415

(continued on next page)
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Fig. 2. Stress distributions through thickness of three-ply (0�/90�/0�) laminates (H=a ¼ 0:2, a=b ¼ 3, h ¼ 10�3, m ¼ 0:3 and a ¼ 200 in.)

with SSSS edge conditions, under uniform load. (––�––, rigid bonding; - - - -�- - - -, E ¼ 106; , E ¼ 15� 106; � � �M � � �,
E ¼ 20� 106).

Table 3 (continued)

a=b h (in.) E ¼ 106 E ¼ 15� 106 E ¼ 20� 106

m ¼ 0:01 m ¼ 0:3 m ¼ 0:01 m ¼ 0:3 m ¼ 0:01 m ¼ 0:3

10�7 Present 1.4376 1.4158 1.4353 1.4487 1.4345 1.4170

ANSYS 1.0416 1.0416 1.0416 1.0416 1.0416 1.0416

Liew et al. (1996) 0.9350

{DQR} 1.0421

5 10�3 Present 0.5485 0.5542 0.5497 0.5397 0.5343 0.5393

ANSYS 0.3416 0.3416 0.3416 0.3416 0.3416 0.3416

10�7 Present 0.5997 0.5718 0.5635 0.5765 0.5737 0.5806

ANSYS 0.3416 0.3416 0.3416 0.3416 0.3416 0.3416

Liew et al. (1996) 0.3192

{DQR} 0.3216
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The second example considers the global response of three-ply (identical thickness) (0�/90�/0�) simply
supported rectangular laminates of various in-plane dimensions under uniform surface pressure. The

material properties are similar to those used by Liew et al. (1996)

E1
E0

¼ 20:83;
E2
E0

¼ 10:94;
E3
E2

¼ 1

G12

E0
¼ 6:10;

G13

E0
¼ 3:71;

G23

E0
¼ 6:19

m12 ¼ m13 ¼ m23 ¼ 0:44

ð29Þ

The results which are summarised in Table 3 reveal that the present elastic bonding model is quite

distinct from the earlier rigid and weak bonding models. This is because the introduction of the elastic

Fig. 3. Stress distributions through thickness of three-ply (0�/90�/0�) laminates (H=a ¼ 0:2, a=b ¼ 3, h ¼ 10�3, m ¼ 0:3 and a ¼ 200 in.)

with SCSC edge conditions, under uniform load. (––�––, rigid bonding; - - - -�- - - -, E ¼ 106; , E ¼ 15� 106; � � �M � � �,
E ¼ 20� 106).
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bonding layer influences the structural rigidity of the laminate. Interestingly, when the in-plane dimension

ratio of the laminate is quite large, i.e. the plate becomes beam-like, the central deflection approaches that

of the rigid bonding assumption.

For verification purposes, FE analysis was conducted using the commercial code ANSYS version 6.0.
Eight-noded quadrilateral element SHELL99 was used to model this problem. The SHELL99 element may

be used for layered shell structures, allowing for up to 250 layers. This element has six degrees-of-freedom

at each node, namely translations in the nodal x, y, z directions and rotations about the nodal x, y, z axes.
Converged results are obtained using a mesh distribution of 10� 6 elements for the case a=b ¼ 3, and

20� 6 element for the case a=b ¼ 5. Table 3 indicates that the results obtained are in general comparable to

those obtained from the present model. The slight discrepancies are due to the fact that SHELL99 cannot

accommodate transverse deformation and stresses, thus limiting its accuracy.

Let us now consider the influence of the mechanical properties of the bonding layer upon the central
deflection. For the case where a=b ¼ 3 and H=a ¼ 0:14, the rigid bonding model yields a normalised central
deflection W ¼ 14:432, which is normalised by 106=q, with q being the surface pressure. In the present

Fig. 4. Stress distributions through thickness of three-ply (0�/90�/0� ) laminates (H=a ¼ 0:2, a=b ¼ 3, h ¼ 10�3, m ¼ 0:3 and a ¼ 200 in.)

with CCCC edge conditions, under uniform load. (––�––, rigid bonding; - - - -�- - - -, E ¼ 106; , E ¼ 15� 106; � � �M � � �
E ¼ 20� 106).
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elastic bonding model (m ¼ 0:3 and h ¼ 10�3 in.), for E ¼ 108, W ¼ 15:144; for E ¼ 5� 108, W ¼ 14:914;
and when E ¼ 109, W ¼ 14:6385. This shows that when the bonding layer stiffens, the global deflection of
the structure approaches that of the rigid bonding model.

Figs. 2–4 show the variation of the normal and shear stresses through the thickness of the laminate. The
results also reveal that the maximum normal stresses occur at the centre of the plate while the maximum

shear stresses sxy , sxz and syz occur at locations (0; 0), (0; b=2), and (a=2; 0), respectively. One exceptional case
is the distribution of sxy for the fully clamped case where the maximum is located at the central point. Fig. 2

contrasts the stress distributions through thickness in laminated composites modelled in terms of the rigid

and elastic bonding assumptions. It reveals that both sets of results are distinctly different, especially for the

shear stress distribution.

In the third example, we consider three-ply laminates (0�/90�/0�) with identical thickness and different
support, with the same material properties as those of the last example. The elastic bonding model reveals
that significant discrepancies exist between the above shear stresses and those calculated using the rigid

bonding model. Table 4 and Fig. 3, and Table 5 and Fig. 4, illustrate the various central deflections and

stress distributions for laminates under support conditions of mixed clamped and fully clamped types,

respectively. We will now examine the transverse shear stress distributions for the various support con-

figurations in Figs. 2–4. The results show that for the simply supported SSSS and simply supported-

clamped SCSC cases, even with the present elastic bonding model, there is only a limited difference between

the transverse shear stresses of adjoining plies. However, in the fully clamped CCCC case, the usefulness of

Table 4

Comparison of normalised central deflections (W � 106=q) of SCSC-supported laminates [0�/90�/0�], where the simply-supported edges
are at x ¼ 0 and a, and clamped edges are at y ¼ 0 and b for the case a ¼ 200 in.

a=b h (in.) E ¼ 106 E ¼ 15� 106 E ¼ 20� 106

m ¼ 0:2 m ¼ 0:3 m ¼ 0:4 m ¼ 0:2 m ¼ 0:3 m ¼ 0:4 m ¼ 0:2 m ¼ 0:3 m ¼ 0:4

H/a ¼ 0:14

10�3 6.9836 6.9835 6.9831 6.9831 6.9826 6.9812 6.9827 6.9818 6.9794

3 10�5 6.9844 6.9843 6.9839 6.9844 6.9842 6.9836 6.9843 6.9840 6.9833

10�7 6.9844 6.9842 6.9839 6.9843 6.9841 6.9835 6.9843 6.9840 6.9832

Liew et al. (1996) 6.7577

{DQR} 6.9784

10�3 1.8397 1.8397 1.8398 1.8396 1.8395 1.8394 1.8395 1.8394 1.8391

5 10�5 1.8398 1.8398 1.8398 1.8398 1.8398 1.8397 1.8398 1.8397 1.8397

10�7 1.8398 1.8398 1.8398 1.8398 1.8398 1.8397 1.8398 1.8398 1.8397

Liew et al. (1996) 1.8913

{DQR} 1.8386

H/a¼ 0:2
10�3 3.9047 3.9047 3.9048 3.9046 3.9045 3.9042 3.9044 3.9042 3.9036

3 10�5 3.9050 3.9049 3.9048 3.9050 3.9049 3.9048 3.9049 3.9049 3.9047

10�7 3.9050 3.9049 3.9049 3.9050 3.9049 3.9048 3.9050 3.9049 3.9047

Liew et al. (1996) 3.9116

{DQR} 3.9020

10�3 1.0760 1.0760 1.0761 1.0760 1.0760 1.760 1.0759 1.0759 1.0759

5 10�5 1.0761 1.0761 1.0761 1.0761 1.0761 1.0761 1.0761 1.0761 1.0761

10�7 1.0761 1.0761 1.0761 1.0761 1.0761 1.0761 1.0761 1.0761 1.0761

Liew et al. (1996) 1.2202

{DQR} 1.0757
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the present elastic bonding model is clearly evident. In particular, it has enabled us to determine the dif-

ferences that exist between the transverse shear stresses of adjoining plies. To illustrate this difference more

clearly, a blown-up diagram, Fig. 5, is plotted based on Fig. 3(f) as an example. In Fig. 5, the dashed line

AB0C0EFG represents the stress distribution obtained through the current elastic bonding model, while the

solid line ABCDE0G represents that of the rigid bonding model. The sections B0C0 and EF of elastic
bonding cannot be visualized in Figs. 2–4, while points B0, C0, E and F are vertically located along lamina

interface for the rigid bonding case.

4. Conclusions

Distinct from existing methods, such as the weak and rigid bonding models, this paper presents an elastic
bonding model embodied by a material bonding layer. Differential quadrature modelling scheme is de-

Table 5

Comparison of normalised central deflections (W � 106=q) of fully clamped (CCCC) laminates [0�=90�=0�] a ¼ 200 in.

a=b h (in.) E ¼ 106 E ¼ 15� 106 E ¼ 20� 106

m ¼ 0:2 m ¼ 0:3 m ¼ 0:4 m ¼ 0:2 m ¼ 0:3 m ¼ 0:4 m ¼ 0:2 m ¼ 0:3 m ¼ 0:4

H=a¼ 0.14
3 10�3 6.9136 6.9136 6.9136 6.9132 6.9129 6.9121 6.9128 6.9122 6.9106

10�7 6.9139 6.9138 6.9139 6.9139 6.9139 6.9139 6.9139 6.9139 6.9139

Liew et al. (1996) 6.6931

{DQR} 6.9130

5 10�3 1.8370 1.8371 1.8372 1.8369 1.8369 1.8369 1.8369 1.8368 1.8366

10�7 1.8370 1.8370 1.8370 1.8370 1.8370 1.8370 1.8370 1.8370 1.8370

Liew et al. (1996) 1.8902

{DQR} 1.8368

H=a¼ 0.2
3 10�3 3.8655 3.8655 3.8656 3.8653 3.8653 3.8651 3.8652 3.8651 3.8647

10�7 3.8655 3.8655 3.8655 3.8655 3.8655 3.8655 3.8655 3.8655 3.8655

Liew et al. (1996) 3.8696

{DQR} 3.8652

5 10�3 1.0743 1.0743 1.0744 1.0743 1.0743 1.0743 1.0742 1.0742 1.0742

10�7 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743

Liew et al. (1996) 1.2192

{DQR} 1.0742

Fig. 5. Blown-up diagram of Fig. 3(f): (- - -) current elastic bonding; (––) rigid bonding.
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veloped, incorporating three-dimensional elasticity theory, in a layerwise framework. Interfacial charac-

teristics of continuity and discontinuity fulfil the kinematic compatibility through the bonding layer. All the

physical equations governing the problem are satisfied and the results for some typical cases are investi-

gated. Validation tests through comparisons with finite element analysis and existing results from the open
literature are considered. A detailed study of the convergence characteristics of the present formulations has

also been conducted. All evidence indicates that the present three-dimensional layerwise DQ model of

elastic bonding is robust, effective, and accurate. This can be attributed to the strict theoretical foundation,

rational simplification of the bonding model, and the proper exploitation of the DQ method for the

computational scheme. Remarkably, the present elastic bonding model establishes a self-adjustable con-

figuration to simulate the diverse bonding characteristics in laminates. Unlike existing rigid or weak

bonding models, the present three-dimensional model exposes previously unknown mechanical features in

individual lamina.
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